

Landsat 7 Technical Session

Backup Charts to Explain:

- 1) Relationship Between Video Time Code and PCD Time Code
- 2) Definition of Interval Header and Trailer
- 3) Impact on Scheduling of Intervals
- 4) Intervals and Subintervals

Terry Arvidson Lockheed Martin Missiles and Space Senior System Engineer in Landsat 7 Project Office

Telemetry Sampling within the PCD

- Within the 75 Mbps data stream, time code in the PCD is 8 seconds behind time code in the video data (see page 3)
 - 8 second delay due to time required by flight software to accumulate the telemetry and transfer it to the ETM+ for insertion in the PCD (see page 4)
 - applies to all telemetry except ADS and gyro values these are inserted into the PCD in realtime by the ETM+
- Some telemetry points are only sampled once per PCD cycle (once every 16 seconds)
 - these include temperature values required for radiometric correction
 - must include additional data at the end of desired interval acquisition in order to get the temperature points corresponding to the last scene in the interval (see page 5)

I

Relationship between Video and PCD Time

Flight Software Accumulation of Telemetry for PCD

FSW = Flight Software MF = Major Frame PDF = Payload Data (PCD) Formatter

Definition of Interval Header and Trailer

- Six seconds of header data added to beginning of interval
 - 1 second for along-track scene overlap for first scene
 - 1 second to account for uncertainty in Scheduler's knowledge of WRS start time
 - 4 seconds to get an additional PCD major frame prior to start of video data to make sure all gyro and ADS values for first scene are included
- Eighteen seconds of trailer data added to end of interval
 - 1 second for along-track scene overlap for last scene
 - 1 second to account for uncertainty in Scheduler's knowledge of WRS start time
 - 16 seconds to get an additional 4 PCD major frames (one PCD cycle) to make sure all temperature values required for radiometric correction of last scene are included

Impact on Scheduling of Intervals

- Scheduler will calculate data start time as follows:
 - calculate time at scene center of first requested WRS scene
 - backup 12 seconds to get to start of nominal scene
 - backup an additional 6 seconds to get to beginning of header data
 - this is the time assigned as data start time in the schedule
 - AOS will be scheduled 6 seconds before the calculated data start time
- Scheduler will calculate data stop time as follows:
 - calculate time at scene center of last requested WRS scene
 - add 12 seconds to get to end of nominal scene
 - add an additional 18 seconds to get to end of trailer data
 - this is the time assigned as data stop time in the schedule
 - LOS will be scheduled 1 second after the calculated data stop time

Intervals and Subintervals

- Interval is composed of continuous scenes along a WRS path acquired during a single ETM+ ON - to - ETM+ OFF period
- Interval: PCD Header = 6 seconds

Acquisitions = 24 seconds per WRS scene

PCD Trailer = 18 seconds

Н	1	2	3	4	5	Trailer
---	---	---	---	---	---	---------

H = Header

- When an Interval must be broken into pieces, each piece is called a Subinterval.
- Reasons for creating Subintervals:
 - loss of sync during processing to L0R
 - not enough time within contact to bring down full Interval from recorder (applies to US only)
- Subinterval: PCD Header = 6 seconds

Acquisitions = 24 seconds per WRS scene

PCD Trailer = 18 seconds

